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March and Santamaria have recently proposed non-local generalizations of kinetic and exchange energy 
densities of an inhomogeneous electron liquid and have related these through restricted Hartree-Fock 
theory. Prompted further by the work of Lee, Lee and Parr, the above results are generalized to include 
the unrestricted Hartree-Fock theory. Finally, approximations of the type required to relate to the work 
of Lee et. a/. are referred to. 
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1 BACKGROUND 

Non-local generalizations of kinetic and exchange energy densities of an inhomoge- 
neous electron liquid have recently been defined by March and Santamaria' (referred 
to as MS below) and these have then been related through Hartree-Fock (HF) theory. 
Since this work, the related approximate study of Lee, Lee and Par? (LLP) has 
appeared. This has prompted us to (i) effect generalizations of the work of Ref. 1, (ii) 
study these generalizations variationally and (iii) relate Refs. 1 and 2. 

It has been known for a long time that restricted Hartree-Fock (RHF) theory can 
be characterized by its idempotent first-order density matrix (Dirac density matrix). 
For even numbers of electrons N,  with N/2 doubly occupied spatial orbitals vj(r), 
j = 1, . . . , N/2, this matrix has the form 
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44 A. HOLAS AND N. H. MARCH 

which satisfies the idempotency relation 

2 KINETIC AND EXCHANGE ENERGY DENSITIES 

A general, complex form of the matrix p(rl,rz) in Eq. (1) will first be used. However, 
for some final steps it will prove necessary to specialize by assuming a real matrix. 
Following MS, the total kinetic energy T is written as an integral through space of 
the kinetic energy density z(r): 

T = d3rs(r) s 
where r(r) is then expressed by the non-local kernel K(r, r‘) through 

r(r) = d3r’K(r, r’). s 
(3) 

(4) 

In terms of the Dirac density matrix p(r, r’) this kernel K takes the form4 

The following definition of the kinetic energy: 

and the idempotency property (2) have been used to obtain the result (5 ) .  The kinetic 
energy density defined by Eq. (6) possesses a unique property 

Turning to the restricted HF exchange energy A ,  MS’ again write this in terms 
of an energy density, Ex@) say, where 

A = d3rs,(r) s 
with E,(r) given by the non-local expression 

E,(r) = d3r’X(r, r’). s (9) 
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KINETIC AND EXCHANGE ENERGY OF ELECTRON LIQUID 45 

Here the kernel can again by written in terms of the Dirac density matrix as 

1 p(r,  r’)p(r’, r) 1 I p(r, r? I 2  
4 ( r  - r’I 4 Ir - r’( 

- - _ _ ~  - X(r, r’) = - - - - 

which evidently reduces to Eq. (11) of Ref. 1 when p(r, r’) is real. 
In order to express both K and X in terms of some common function, F(r, r’) say, 

we must restrict ourselves subsequently to those RHF systems for which the Dirac 
matrix is real: 

p(r, r’) = p*(r, r’) = p(r’, r). (1 1) 

Given this assumption (1 l), one again follows Ref. 1 by introducing 

which is evidently also real and symmetrical. Then the kinetic energy kernel Kin Eq. 
( 5 )  can be rewritten as 

1 [V, m, r‘)l K(r, r‘) = - 
16 F(r,r’) (13) 

to be compared’ with Eq. (14) of Ref. 1. The exchange energy kernel (10) likewise 
becomes 

1 F(r, r’) 
X(r, r’) = - - __ 

4 ( r  - r’ ( ’  

Since Eqs. (13) and (14) are written in terms of F(r, r’) rather than the Dirac matrix, 
it is worth recording that the electron density p(r) is also expressible in terms of F. 
Thus, taking into account Eqs. (l), (2), (11) and (12) we find 

p(r) = p(r, r) = F1I2(r, r) = 4 d3r’F(r,  r’). (15) s 
Therefore the classical parts of the potential energy in RHF theory can be considered 
as functionals of F(r, r’), just as with the kinetic and exchange energies given through 
Eqs. (13) and (14) respectively. 

3 VARIATIONAL APPROACH 

From the above, it might seem attractive to minimize the RHF total energy with 
respect to F(r, r’) for systems where p(r, r‘) is real. Of course, some constraints are 
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46 A. HOLAS AND N. H. MARCH 

necessary. As usual, one of these is the normalization condition, which from Eq. (15) 
can evidently be written as 

In addition the diagonal part of the idempotency condition ( 2 )  (see also Eq. (15)) 
implies the constraint 

F ’  ’(r, r) = d3r‘F(r, r’), s 
but it has not, so far, proved possible to write the off-diagonal part in terms of F. 

In  order to explore the variational approach with the above constraints, let us 
consider independent electrons moving in an external potential u(r), rather than the 
RHF problem. The result obtained is then 

6(r - r’) 
F ‘’2(r, r’) 

+ u(r) - i. - h(r) [ - 11 = 0. (18) 

The Lagrange multipliers i. and Air) are introduced to take care of the constraints 
(16) and ( 17) respectively. 

But now this non-interacting problem can be solved alternatively via the one- 
electron Schrodinger equation with the potential u(r). The quantities p(r, r’) and 
F(r, r‘) can be constructed then from the eigenfunctions according to Eqs. (1) and 
(1 2) .  It turns out that Eq. (1 8) is only exactly satisfied by the F(r, r’) thus constructed 
when all the one-electron eigenvalues are degenerate; an uninteresting case. Pre- 
sumably therefore, calculating from Eq. (18) would then, in general, lead to a 
ground-state energy lower than the correct value, since some constraints are still 
neglected. However, it may well be that a modification of Eq. (18) to include, besides 
exchange and classical repulsion, some electrcn correlation, will find its place in an 
eventual approximate many-electron theory, since there is no such idempotency 
condition when the one-electron approximation is relaxed. 

4 UNRESTRICTED HARTREE-FOCK THEORY 

The results above can be readily generalized to unrestricted HF (UHF) theory, 
because both the kinetic energy and exchange energy can be written in this theory 
again in terms of first-order density matrices, separately for subsystems of spin-up 
and spin-down electrons. Of N spin orbitals $ j r ,  s), let those havingj = 1, 2 ,  . . . , N ,  
be connected with “up” spinors, i / i j  = cp,(r)a(s) and those having j = N ,  + 1, . . . , N 
with (“down”) spinors, $ j r ,  s) = cpjr) B(S). Evidently 
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KINETIC AND EXCHANGE ENERGY OF ELECTRON LIQUID 41 

Let us define Dirac matrices for the subsystems as 

and 

If N ,  = N ,  and the set of all functions involved in Eq. (20) is the same as the set in 
Eq. (21), then pT = p ,  and by denoting p(rl, r2) = 2 pT(rl, rz) we regain the case 
of restricted HF theory. 

In UHF theory, either N ,  # N ,  or the sets differ by one, two or more functions. The 
matrices p r  and p ,  are again idempotent. 

and the total density is given by the sum of subsystem diagonal contributions: 

which are such that 

d3rpu(r) = N u .  s 
The kinetic energy Su(r) is obtained by applying the definition (6) acting on pu(rl, r2) 
so the total value is 

The exchange energy is also additive: 

where 
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48 A. HOLAS A N D  N. H. MARCH 

The different numerical factor as compared with Eqs. (8H10)  should be noted. 
All derivations given above in Eqs. ( 4 x 1 4 )  can now be applied to each subsystem 
separately, with minor modifications. 

If, as previously, we restrict attention to configurations for which the matrices 
pa(rlrr2)  are real, then the results of March and Santamaria’ are generalized for 
UHF theory to 

and 

5 APPROXIMATE MODELS 

At this point, let us return to the approximate formulation of Lee, Lee and Pax2,  
based on the earlier work of Becke6. We no longer are within Hartree-Fock; we are 
entering the province of models. Using the approximate results for T and A set out 
by LLP, we have 

7 = ~ , { p ( r ) } ~ ’ ~ ( l  + aG(2)); 
3h2 
lorn 

ck = -- ( 3 / 8 1 ~ ) ~ ’ ~  

and 

ex = - ~ ~ ( p ( r ) } ~ ’ ~ i l  + pG(2)); c, = $e2(3/7c)1’3 (33) 

where I is a density gradient variable I = 21/3Vp/p4’3. Returning to the non-local 
kernels K and X of March and Santamaria, we hence have the approximate 
results 

J K(r, r’)d3r’ = C ~ { ~ ( ~ ) } ~ / ~ [ I  + crG(2)I (34) 

and 

X(r, r’)d3r’ = - ~ , ( p ( r ) } ~ ’ ~ [ l  + BG(2)l. (35) 

We now proceed to eliminate the function G(x) between Eqs. (34) and (35) to 
obtain, after the somewhat drastic step of equating integrands’, with the choice, for 
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KINETIC AND EXCHANGE ENERGY OF ELECTRON LIQUID 49 

simplicity, c( = p recommended by LLP for some purposes: 

Accepting Eq. (36) as the basis for a model, one can satisfy it by writing 

I r - r’ 1 K(r, r‘) = c(r’)k(r) 

and 

to find 

( r  - r‘IX(r, r‘) = c(r’)x(r) 

(37) 

(38) 

All this is equivalent to the choice (compare Eqs. (14) and (38)) 

F(r, r’) = -4c(r‘)x(r) (40) 

with the simplicity, but no doubt the severe limitation, of a separable assumption. 
One can escape from this by symmetrizing to write 

Fmode,(r, r’) = - 2[c(r’)x(r) + c(r)x(r’)] . (41) 

Of course, once such a model for F as in Eq. (41) is established, then for example 
K is to be found from Eq. (13). But it should be cautioned, as with the variational 
result (18), that constraints are not fully incorporated and there is no longer an upper 
bound assured for the total energy. 

6 SUMMARY 

In summary, RHF and UHF theories of an inhomogeneous electron liquid can be 
written in a form in which an intimate relation between kinetic and exchange energies 
emerges. But, so far, to exploit this relation variationally, some part of the idempo- 
tency constraint on the Dirac density matrix has to be relaxed. However, it has been 
pointed out that, once correlation is incorporated, the strict idempotency of the 
first-order Dirac density matrix is replaced by a weaker (Pauli) condition on the 
correlated first-order density matrix, y(r, r’), namely yz < y. Thus some of the present 
study, when modified to include an approximate form of correlation energy, may 
have interest beyond RHF or UHF. 
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